By Topic

High-radix Montgomery modular exponentiation on reconfigurable hardware

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Blum, T. ; Ergon Inf. AG, Zurich, Switzerland ; Paar, C.

It is widely recognized that security issues will play a crucial role in the majority of future computer and communication systems. Central tools for achieving system security are cryptographic algorithms. This contribution proposes arithmetic architectures which are optimized for modern field programmable gate arrays (FPGAs). The proposed architectures perform modular exponentiation with very long integers. This operation is at the heart of many practical public-key algorithms such as RSA and discrete logarithm schemes. We combine a high-radix Montgomery modular multiplication algorithm with a new systolic array design. The designs are flexible, allowing any choice of operand and modulus. The new architecture also allows the use of high radices. Unlike previous approaches, we systematically implement and compare several variants of our new architecture for different bit lengths. We provide absolute area and timing measures for each architecture. The results allow conclusions about the feasibility and time-space trade-offs of our architecture for implementation on commercially available FPGAs. We found that 1,024-bit RSA decryption can be done in 3.1 ms with our fastest architecture

Published in:

Computers, IEEE Transactions on  (Volume:50 ,  Issue: 7 )