By Topic

Optimal algorithms for well-conditioned nonlinear systems of equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bianchini, M. ; Dipt. di Ingegneria dell''Inf., Siena Univ., Italy ; Fanelli, S. ; Gori, M.

We propose solving nonlinear systems of equations by function optimization and we give an optimal algorithm which relies on a special canonical form of gradient descent. The algorithm can be applied under certain assumptions on the function to be optimized, that is, an upper bound must exist for the norm of the Hessian, whereas the norm of the gradient must be lower bounded. Due to its intrinsic structure, the algorithm looks particularly appealing for a parallel implementation. As a particular case, more specific results are given for linear systems. We prove that reaching a solution with a degree of precision ε takes Θ(n2k2 log k/ε ), k being the condition number of A and n the problem dimension. Related results hold for systems of quadratic equations for which an estimation for the requested bounds can be devised. Finally, we report numerical results in order to establish the actual computational burden of the proposed method and to assess its performances with respect to classical algorithms for solving linear and quadratic equations

Published in:

Computers, IEEE Transactions on  (Volume:50 ,  Issue: 7 )