By Topic

The confounding effect of class size on the validity of object-oriented metrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
El Emam, K. ; Inst. for Inf. Technol., Nat. Res. Council of Canada, Ottawa, Ont., Canada ; Benlarbi, S. ; Goel, N. ; Rai, S.N.

Much effort has been devoted to the development and empirical validation of object-oriented metrics. The empirical validations performed thus far would suggest that a core set of validated metrics is close to being identified. However, none of these studies allow for the potentially confounding effect of class size. We demonstrate a strong size confounding effect and question the results of previous object-oriented metrics validation studies. We first investigated whether there is a confounding effect of class size in validation studies of object-oriented metrics and show that, based on previous work, there is reason to believe that such an effect exists. We then describe a detailed empirical methodology for identifying those effects. Finally, we perform a study on a large C++ telecommunications framework to examine if size is really a confounder. This study considered the Chidamber and Kemerer metrics and a subset of the Lorenz and Kidd metrics. The dependent variable was the incidence of a fault attributable to a field failure (fault-proneness of a class). Our findings indicate that, before controlling for size, the results are very similar to previous studies. The metrics that are expected to be validated are indeed associated with fault-proneness

Published in:

Software Engineering, IEEE Transactions on  (Volume:27 ,  Issue: 7 )