By Topic

Foundations of the trace assertion method of module interface specification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Janicki, Ryszard ; McMaster Univ., Hamilton, Ont., Canada ; Sekerinski, E.

The trace assertion method is a formal state machine based method for specifying module interfaces. A module interface specification treats the module as a black-box, identifying all the module's access programs (i.e., programs that can be invoked from outside of the module) and describing their externally visible effects. In the method, both the module states and the behaviors observed are fully described by traces built from access program invocations and their visible effects. A formal model for the trace assertion method is proposed. The concept of step-traces is introduced and applied. The stepwise refinement of trace assertion specifications is considered. The role of nondeterminism, normal and exceptional behavior, value functions, and multiobject modules are discussed. The relationship with algebraic specifications is analyzed. A tabular notation for writing trace specifications to ensure readability is adapted

Published in:

Software Engineering, IEEE Transactions on  (Volume:27 ,  Issue: 7 )