By Topic

Modeling of ultrasonic wave propagation in teeth using PSpice: a comparison with finite element models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ghorayeb, S.R. ; Dept. of Electr. & Biomed. Eng., Hofstra Univ., Hempstead, NY, USA ; Maione, E. ; La Magna, V.

Ultrasound is used extensively in the medical field for the detection and characterization of a variety of features in the human body. Finite element models used to understand ultrasonic wave propagation in teeth have been developed so that ultrasound techniques could be realized in dentistry. This paper presents a hypothesis that underlies one possible design of an ultrasonic tool that can be used in a clinical environment, as well as several models that describe acoustic field simulation, propagation, and interaction with the layers of several tooth structures. A complete PSpice model of a single-element transducer based on Redwood's version of Mason's equivalent circuit, a focusing lens, and a multi-layer tooth structure is used to illustrate the validity of this hypothesis. Transmission line theory is employed as a basis for the models of the piezoceramic, the lens, and the different tooth layers. The results clearly depict the transmission and reflection of the ultrasonic waves as they travel through the layers within the tooth structure and point out the noticeable similarity to longitudinal L-wave signatures produced by axisymmetric finite element models presented in earlier studies.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:48 ,  Issue: 4 )