By Topic

A new detection method for capacitive micromachined ultrasonic transducers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ergun, A.S. ; Edward L. Ginzton Lab., Stanford Univ., CA, USA ; Temelkuran, Burak ; Ozbay, E. ; Atalar, A.

Capacitive micromachined ultrasonic transducers (cMUT) have become an alternative to piezoelectric transducers in the past few years. They consist of many small circular membranes that are connected in parallel. In this work, we report a new detection method for cMUTs. We model the membranes as capacitors and the interconnections between the membranes as inductors. This kind of LC network is called an artificial transmission line. The vibrations of the membranes modulate the electrical length of the transmission line, which is proportional to the frequency of the signal through it. By measuring the electrical length of the artificial line at a high RF frequency (in the gigahertz range), the vibrations of the membranes can be detected in a very sensitive manner. For the devices we measured, we calculated the minimum detectable displacement to be in the order of 10/sup -5/ /spl Aring///spl radic/Hz with a possible improvement to 10/sup -7/ /spl Aring///spl radic/Hz.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:48 ,  Issue: 4 )