By Topic

Hardware/software instruction set configurability for system-on-chip processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Wang ; Tensilica Inc., Santa Clara, CA, USA ; E. Killian ; D. Maydan ; C. Rowen

New application-focused system-on-chip platforms motivate new application-specific processors. Configurable and extensible processor architectures offer the efficiency of tuned logic solutions with the flexibility of standard high-level programming methodology. Automated extension of processor function units and the associated software environment-compilers, debuggers, simulators and real-time operating systems-satisfies these needs. At the same time, designing at the level of software and instruction set architecture significantly shortens the design cycle and reduces verification effort and risk. This paper describes the key dimensions of extensibility within the processor architecture, the instruction set extension description language and the means of automatically extending the software environment from that description. It also describes two groups of benchmarks, EEMBC's Consumer and Telecommunications suites, that show 20 to 40 times acceleration of a broad set of algorithms through application-specific instruction set extension, relative to high performance RISC processors.

Published in:

Design Automation Conference, 2001. Proceedings

Date of Conference:

22-22 June 2001