By Topic

Formal property verification by abstraction refinement with formal, simulation and hybrid engines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Dong Wang ; Carnegie Mellon Univ., Pittsburgh, PA, USA ; Pei-Hsin Ho ; Jiang Long ; J. Kukula
more authors

We present RFN, a formal property verification tool based on abstraction refinement. Abstraction refinement is a strategy for property verification. It iteratively refines an abstract model to better approximate the behavior of the original design in the hope that the abstract model alone will provide enough evidence to prove or disprove the property. However, previous work on abstraction refinement was only demonstrated on designs with up to 500 registers. We developed RFN to verify real-world designs that may contain thousands of registers. RFN differs from the previous work in several ways. First, instead of relying on a single engine, RFN employs multiple formal verification engines, including a BDD-ATPG hybrid engine and a conventional BDD-based fixpoint engine, for finding error traces or proving properties on the abstract model. Second, RFN uses a novel two-phase process involving 3-valued simulation and sequential ATPG to determine how to refine the abstract model. Third, RFN avoids the weakness of other abstraction-refinement algorithms-finding error traces on the original design, by utilizing the error trace of the abstract model to guide sequential ATPG to find an error trace on the original design. We implemented and applied a prototype of RFN to verify various properties of real-world RTL designs containing approximately 5,000 registers, which represents an order of magnitude improvement over previous results. On these designs, we successfully proved a few properties and discovered a design violation.

Published in:

Design Automation Conference, 2001. Proceedings

Date of Conference:

22-22 June 2001