Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Bankruptcy analysis with self-organizing maps in learning metrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kaski, S. ; Neural Networks Res. Centre, Helsinki Univ. of Technol., Espoo, Finland ; Sinkkonen, J. ; Peltonen, J.

We introduce a method for deriving a metric, locally based on the Fisher information matrix, into the data space. A self-organizing map (SOM) is computed in the new metric to explore financial statements of enterprises. The metric measures local distances in terms of changes in the distribution of an auxiliary random variable that reflects what is important in the data. In this paper the variable indicates bankruptcy within the next few years. The conditional density of the auxiliary variable is first estimated, and the change in the estimate resulting from local displacements in the primary data space is measured using the Fisher information matrix. When a self-organizing map is computed in the new metric it still visualizes the data space in a topology-preserving fashion, but represents the (local) directions in which the probability of bankruptcy changes the most

Published in:

Neural Networks, IEEE Transactions on  (Volume:12 ,  Issue: 4 )