By Topic

Semiparametric ARX neural-network models with an application to forecasting inflation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaohong Chen ; Dept. of Econ., London Sch. of Econ., UK ; Racine, J. ; Swanson, N.R.

We examine semiparametric nonlinear autoregressive models with exogenous variables (NLARX) via three classes of artificial neural networks: the first one uses smooth sigmoid activation functions; the second one uses radial basis activation functions; and the third one uses ridgelet activation functions. We provide root mean squared error convergence rates for these ANN estimators of the conditional mean and median functions with stationary β-mixing data. As an empirical application, we compare the forecasting performance of linear and semiparametric NLARX models of US inflation. We find that all of our semiparametric models outperform a benchmark linear model based on various forecast performance measures. In addition, a semiparametric ridgelet NLARX model which includes various lags of historical inflation and the GDP gap is best in terms of both forecast mean squared error and forecast mean absolute deviation error

Published in:

Neural Networks, IEEE Transactions on  (Volume:12 ,  Issue: 4 )