Cart (Loading....) | Create Account
Close category search window

Backstepping design with local optimality matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zigang Pan ; Dept. of Electr. & Comput. Eng., Cincinnati Univ., OH, USA ; Ezal, K. ; Krener, Arthur J. ; Kokotovic, P.V.

In nonlinear H-optimal control design for strict-feedback nonlinear systems, our objective is to construct globally stabilizing control laws to match the optimal control law up to any desired order, and to be inverse optimal with respect to some computable cost functional. Our recursive construction of a cost functional and the corresponding solution to the Hamilton-Jacobi-Isaacs equation employs a new concept of nonlinear Cholesky factorization. When the value function for the system has a nonlinear Cholesky factorization, we show that the backstepping design procedure can be tuned to yield the optimal control law

Published in:

Automatic Control, IEEE Transactions on  (Volume:46 ,  Issue: 7 )

Date of Publication:

Jul 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.