By Topic

Mesh optimization for surface approximation using an efficient coarse-to-fine evolutionary algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hui-Ling Huang ; Dept. of Inf. Eng., Feng Chia Univ., Taichung, Taiwan ; Shinn-Ying Ho

This paper investigates surface approximation using a mesh optimization approach. The mesh optimization problem is how to locate a limited number n of grid points such that the established mesh of n grid points approximates the digital surface of N sample points as closely as possible. The resulting combinatorial problem has an NP-hard search space of C(N, n) instances, i.e., the number of ways of choosing n grid points out of N sample points. A genetic algorithm-based method has been proposed for establishing optimal approximating mesh surfaces. It was shown that the GA-based method is effective in searching the combinatorial space which is intractable when n and N are in the order of thousands. This paper proposes an efficient coarse-to-fine evolutionary algorithm with a novel 2D orthogonal crossover for obtaining an optimal solution to the mesh optimization problem. It is shown empirically that the proposed coarse-to-fine evolutionary algorithm outperforms the existing GA-based method in solving the mesh optimization problem in terms of both approximation quality and convergence speed, especially in solving large mesh optimization problems

Published in:

Evolutionary Computation, 2001. Proceedings of the 2001 Congress on  (Volume:1 )

Date of Conference:

2001