By Topic

Parallel quantum-inspired genetic algorithm for combinatorial optimization problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kuk-Hyun Han ; Dept. of Electr. Eng. & Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea ; Kui-Hong Park ; Chi-Ho Lee ; Jong-Hwan Kim

This paper proposes a new parallel evolutionary algorithm called parallel quantum-inspired genetic algorithm (PQGA). Quantum-inspired genetic algorithm (QGA) is based on the concept and principles of quantum computing such as qubits and superposition of states. Instead of binary, numeric, or symbolic representation, by adopting the qubit chromosome as a representation, QGA can represent a linear superposition of solutions due to its probabilistic representation. QGA is suitable for parallel structures because of rapid convergence and good global search capability. That is, QGA is able to possess the two characteristics of exploration and exploitation simultaneously. The effectiveness and the applicability of PQGA are demonstrated by experimental results on the knapsack problem, which is a well-known combinatorial optimization problem. The results show that PQGA is superior to QGA as well as other conventional genetic algorithms

Published in:

Evolutionary Computation, 2001. Proceedings of the 2001 Congress on  (Volume:2 )

Date of Conference: