Cart (Loading....) | Create Account
Close category search window
 

On the behavior of information theoretic criteria for model order selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liavas, A.P. ; Dept. of Comput. Sci., Ioannina Univ., Greece ; Regalia, P.A.

The Akaike (1974) information criterion (AIC) and the minimum description length (MDL) are two well-known criteria for model order selection in the additive white noise case. Our aim is to study the influence on their behavior of a large gap between the signal and the noise eigenvalues and of the noise eigenvalue dispersion. Our results are mostly qualitative and serve to explain the behavior of the AIC and the MDL in some cases of great practical importance. We show that when the noise eigenvalues are not clustered sufficiently closely, then the AIC and the MDL may lead to overmodeling by ignoring an arbitrarily large gap between the signal and the noise eigenvalues. For fixed number of data samples, overmodeling becomes more likely for increasing the dispersion of the noise eigenvalues. For fixed dispersion, overmodeling becomes more likely for increasing the number of data samples. Undermodeling may happen in the cases where the signal and the noise eigenvalues are not well separated and the noise eigenvalues are clustered sufficiently closely. We illustrate our results by using simulations from the effective channel order determination area

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 8 )

Date of Publication:

Aug 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.