By Topic

Information-theoretic assessment of sampled hyperspectral imagers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This work focuses on estimating the information conveyed to a user by hyperspectral image data. The goal is establishing the extent to which an increase in spectral resolution enhances the amount of usable information. Indeed, a tradeoff exists between spatial and spectral resolution due to physical constraints of multi-band sensors imaging with a prefixed SNR. After describing an original method developed for the automatic estimation of variance and correlation of the noise introduced by hyperspectral imagers, lossless interband data compression is exploited to measure the useful information content of hyperspectral data. In fact, the bit rate achieved by the reversible compression process takes into account both the contribution of the “observation” noise (i.e., information regarded as statistical uncertainty, but whose relevance to a user is null) and the intrinsic information of radiance sampled and digitized through an ideally noise-free process. An entropic model of the decorrelated image source is defined and, once the parameters of the noise, assumed to be Gaussian and stationary, have been measured, such a model is inverted to yield an estimate of the information content of the noise-free source from the code rate. Results are reported and discussed on both simulated and AVIRIS data

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:39 ,  Issue: 7 )