By Topic

Asymmetric Mach-Zehnder germano-silicate channel waveguide interferometers for quantum cryptography systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
G. Bonfrate ; Corning Res. Centre, Ipswich, UK ; M. Harlow ; C. Ford ; G. Maxwell
more authors

Asymmetric Mach-Zehnder channel waveguide interferometers possessing a 1.1 ns delay in one of the arms were fabricated using flame hydrolysis deposition of silica glass on silicon. Two modules were combined to form a single time-division interferometer for optical pulses. The composite interferometer exhibited a high fringe contrast ratio of 1:200 making it eminently suitable for use in compact, low error-rate quantum cryptography systems

Published in:

Electronics Letters  (Volume:37 ,  Issue: 13 )