By Topic

An investigation of the pressure-to-acceleration responsivity ratio of fiber-optic mandrel hydrophones

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
O. H. Waagaard ; Dept. of Phys. Electron., Norwegian Univ. of Sci. & Technol., Trondheim, Norway ; G. B. Havsgard ; G. Wang

The acceleration responsivity of the fiber-optic air-backed mandrel hydrophone is studied. This responsivity may be a significant noise source in high vibration environments. The pressure-to-acceleration responsivity ratio is therefore a figure of merit for the hydrophone. It is shown that an ideal hydrophone with a sufficiently rigid support cylinder should not show any first-order acceleration responsivity. The dominant contribution to any first-order acceleration responsivity is the deformation of the support cylinder due to acceleration. The responses are evaluated both theoretically and experimentally. This treatment gives a set of guidelines which should be followed in order to maximize the pressure-to-acceleration responsivity ratio. It is also theoretically and experimentally demonstrated that the axial acceleration responsivity can be significantly reduced by symmetrical elicitation of the hydrophone

Published in:

Journal of Lightwave Technology  (Volume:19 ,  Issue: 7 )