By Topic

Planning and obstacle avoidance for mobile robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. Papadopoulos ; Dept. of Mech. Eng., Nat. Tech. Univ. of Athens, Greece ; I. Poulakakis

A planning methodology for nonholonomic mobile manipulators that employs smooth and continuous functions such as polynomials is developed. The method decouples kinematically the manipulator from the platform by constructing admissible paths that drive it to a final configuration and is based on mapping the nonholonomic constraint to a space where it can be trivially satisfied. In addition, the method allows for direct control over the platform orientation. The developed transformation also maps Cartesian space obstacles to transformed ones and allows for obstacle avoidance by increasing the order of the polynomials that are used in planning trajectories. The additional parameters required are computed systematically. It is shown how the method can be extended for avoiding obstacles of any number.

Published in:

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on  (Volume:4 )

Date of Conference: