By Topic

Vision-based mobile robot localization and mapping using scale-invariant features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Se ; Dept. of Comput. Sci., British Columbia Univ., Vancouver, BC, Canada ; D. Lowe ; J. Little

A key component of a mobile robot system is the ability to localize itself accurately and build a map of the environment simultaneously. In this paper, a vision-based mobile robot localization and mapping algorithm is described which uses scale-invariant image features as landmarks in unmodified dynamic environments. These 3D landmarks are localized and robot ego-motion is estimated by matching them, taking into account the feature viewpoint variation. With our Triclops stereo vision system, experiments show that these features are robustly matched between views, 3D landmarks are tracked, robot pose is estimated and a 3D map is built.

Published in:

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on  (Volume:2 )

Date of Conference: