By Topic

A vision system for landing an unmanned aerial vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sharp, C.S. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Shakernia, O. ; Sastry, S.S.

We present the design and implementation of a real-time computer vision system for a rotorcraft unmanned aerial vehicle to land onto a known landing target. This vision system consists of customized software and off-the-shelf hardware which perform image processing, segmentation, feature point extraction, camera pan/tilt control, and motion estimation. We introduce the design of a landing target which significantly simplifies the computer vision tasks such as corner detection and correspondence matching. Customized algorithms are developed to allow for realtime computation at a frame rate of 30 Hz. Such algorithms include certain linear and nonlinear optimization schemes for model-based camera pose estimation. We present results from an actual flight test which show the vision-based state estimates are accurate to within 5 cm in each axis of translation, and 5 degrees in each axis of rotation, making vision a viable sensor to be placed in the control loop of a hierarchical flight management system.

Published in:

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on  (Volume:2 )

Date of Conference:

2001