By Topic

Slow frequency-hopping multicarrier DS-CDMA for transmission over Nakagami multipath fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lie-Liang Yang ; Dept. of Electron. & Comput. Sci., Southampton Univ., UK ; Hanzo, L.

A novel multiple access scheme based on slow frequency hopping multicarrier direct-sequence code division multiple access (SFH/MC DS-CDMA) is proposed and investigated, which can be rendered compatible with the existing second-generation narrowband CDMA and third-generation wideband CDMA systems. The frequency hopping patterns are controlled by a set of constant-weight codes. Consequently, multirate communications can be implemented by selecting the corresponding sets of constant-weight codes having the required weights controlling the SFH patterns invoked. Two FH schemes, namely random and uniform FH, are considered and their advantages as well as disadvantages are investigated. We assume that the system operates in a multipath fading environment and a RAKE receiver structure with maximum ratio combining (MRC) is used for demodulation. The system's performance is evaluated over the range of multipath Nakagami (1960) fading channels, under the assumption that the receiver has all explicit knowledge of the associated frequency-hopping (FH) patterns invoked. Furthermore, the performance of the SFH/MC DS-CDMA system is compared to that of the conventional single-carrier (SC) DS-CDMA system and that of the conventional MC DS-CDMA system, under the assumptions of constant system bandwidth and of constant transmitted signal power

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:19 ,  Issue: 7 )