By Topic

Deterministic generators and games for LTL fragments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Alur ; Pennsylvania Univ., Philadelphia, PA, USA ; S. La Torre

Deciding infinite two-player games on finite graphs with the winning condition specified by a linear temporal logic (LTL) formula is known to be 2EXPTIME-complete. In this paper, we identify LTL fragments of lower complexity. Solving LTL games typically involves a doubly-exponential translation from LTL formulas to deterministic ω-automata. First, we show that the longest distance (length of the longest simple path) of the generator is also an important parameter, by giving an O(d log n)-space procedure to solve a Buchi game on a graph with n vertices and longest distance d. Then, for the LTL fragment with only eventualities and conjunctions, we provide a translation to deterministic generators of exponential size and linear longest distance, show both of these bounds to be optimal and prove the corresponding games to be PSPACE-complete. Introducing “next” modalities in this fragment, we provide a translation to deterministic generators that is still of exponential size but also with exponential longest distance, show both bounds to be optimal and prove the corresponding games to be EXPTIME-complete. For the fragment resulting by further adding disjunctions, we provide a translation to deterministic generators of doubly-exponential size and exponential longest distance, show both bounds to be optimal and prove the corresponding games to be EXPSPACE. Finally, we show tightness of the double-exponential bound on the size as well as the longest distance for deterministic generators for LTL, even in the absence of “next” and “until” modalities

Published in:

Logic in Computer Science, 2001. Proceedings. 16th Annual IEEE Symposium on

Date of Conference:

2001