By Topic

Intensionality, extensionality, and proof irrelevance in modal type theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pfenning, F. ; Dept. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA

We develop a uniform type theory that integrates intensionality, extensionality and proof irrelevance as judgmental concepts. Any object may be treated intensionally (subject only to α-conversion), extensionally (subject also to βη-conversion), or as irrelevant (equal to any other object at the same type), depending on where it occurs. Modal restrictions developed by R. Harper et al. (2000) for single types are generalized and employed to guarantee consistency between these views of objects. Potential applications are in logical frameworks, functional programming and the foundations of first-order modal logics. Our type theory contrasts with previous approaches that, a priori, distinguished propositions (whose proofs are all identified - only their existence is important) from specifications (whose implementations are subject to some definitional equalities)

Published in:

Logic in Computer Science, 2001. Proceedings. 16th Annual IEEE Symposium on

Date of Conference:

2001