By Topic

Selection of relevant features in a fuzzy genetic learning algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gonzalez, A. ; Dept. de Ciencias de la Comput. e Inteligencia Artificial, Granada Univ., Spain ; Perez, R.

Genetic algorithms offer a powerful search method for a variety of learning tasks, and there are different approaches in which they have been applied to learning processes. Structural learning algorithm on vague environment (SLAVE) is a genetic learning algorithm that uses the iterative approach to learn fuzzy rules. SLAVE can select the relevant features of the domain, but when working with large databases the search space is too large and the running time can sometimes be excessive. We propose to improve SLAVE by including a feature selection model in which the genetic algorithm works with individuals (representing individual rules) composed of two structures: one structure representing the relevance status of the involved variables in the rule, the other one representing the assignments variable/value. For this general representation, we study two alternatives depending on the information coded in the first structure. When compared with the initial algorithm, this new approach of SLAVE reduces the number of rules, simplifies the structure of the rules and improves the total accuracy

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:31 ,  Issue: 3 )