By Topic

A new control method of nonlinear systems based on impulse responses of universal learning networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hirasawa, K. ; Dept. of Electr. & Electron. Syst. Eng., Kyushu Univ., Fukuoka, Japan ; Jinglu Hu ; Murata, J. ; ChunZhi Jin

A new control method of nonlinear dynamic systems is proposed based on the impulse responses of universal learning networks (ULNs), ULNs form a superset of neural networks. They consist of a number of interconnected nodes where the nodes may have any continuously differentiable nonlinear functions in them and each pair of nodes can be connected by multiple branches with arbitrary time delays. A generalized learning algorithm is derived for the ULNs, in which both the first order derivatives (gradients) and the higher order derivatives are incorporated. One of the distinguished features of the proposed control method is that the impulse response of the systems is considered as an extended part of the criterion function and it can be calculated by using the higher order derivatives of ULNs. By using the impulse response as the criterion function, nonlinear dynamics with not only quick response but also quick damping and small steady state error can be more easily obtained than the conventional nonlinear control systems with quadratic form criterion functions of state and control variables

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:31 ,  Issue: 3 )