By Topic

FunState-an internal design representation for codesign

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Strehl, K. ; ETAS GmbH, Stuttgart, Germany ; Thiele, L. ; Gries, M. ; Ziegenbein, D.
more authors

In this paper, an internal design model called FunState (functions driven by state machines) is presented that enables the representation of different types of system components and scheduling mechanisms using a mixture of functional programming and state machines. It is shown how properties relevant for scheduling and verification of specification models such as Boolean dataflow, cyclostatic dataflow, synchronous dataflow, marked graphs, and communicating state machines as well as Petri nets can be represented in the FunState model of computation. Examples of methods suited for FunState are described, such as scheduling and verification. They are based on the representation of the model's state transitions in the form of a periodic graph. The feasibility of the novel approach is shown with an asynchronous transfer mode switch example.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:9 ,  Issue: 4 )