By Topic

Radiation hardened memories for space applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Haddad, N.F. ; BAE Syst., Manassas, VA, USA ; Brown, R.D. ; Doyle, S. ; Wright, S.J.

Several generations of radiation hardened memory products were developed to support space applications. Both process technology enhancements and specialized design techniques were used to overcome the weaknesses of commercial memories when used in the space environment. The natural advancement of semiconductor technology was used to progressively increase density, enhance performance, and reduce power consumption. Historically, radiation hardened memories for space were fabricated at specialized foundries to achieve strategic levels of radiation hardness for both natural space and military applications. The demand for higher densities and lower cost, however, are pushing for design compatibility with state-of-the-art commercial foundries for 4M SRAM and beyond, and creating a new set of products targeting natural space. Advanced packaging technology is used to improve bit density and reduce weight, both of which are critical for space missions

Published in:

Aerospace Conference, 2001, IEEE Proceedings.  (Volume:5 )

Date of Conference: