By Topic

Novel Gaussian beam method for the rapid analysis of large reflector antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hsi-Tseng Chou ; Dept. of Electr. Eng., Yuan-Ze Univ., Chungli, Taiwan ; Pathak, P.H. ; Burkholder, R.J.

A relatively fast and simple method utilizing Gaussian beams (GBs) is developed which requires only a few seconds on a workstation to compute the near/far fields of electrically large reflector antennas when they are illuminated by a feed with a known radiation pattern. This GB technique is fast, because it completely avoids any numerical integration on the large reflector surface which is required in the conventional physical optics (PO) analysis of such antennas and which could take several hours on a workstation. Specifically, the known feed radiation field is represented by a set of relatively few, rotationally symmetric GBs that are launched radially out from the feed plane and with almost identical interbeam angular spacing. These GBs strike the reflector surface from where they are reflected, and also diffracted by the reflector edge; the expressions for the fields reflected and diffracted by the reflector illuminated with a general astigmatic incident GB from an arbitrary direction (but not close to grazing on the reflector) have been developed in Chou and Pathak (1997) and utilized in this work. Numerical results are presented to illustrate the versatility, accuracy, and efficiency of this GB method when it is used for analyzing general offset parabolic reflectors with a single feed or an array feed, as well as for analyzing nonparabolic reflectors such as those described by ellipsoidal and even general shaped surfaces

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:49 ,  Issue: 6 )