By Topic

Topology preserving deformable image matching using constrained hierarchical parametric models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
O. Musse ; Lab. des Sci. de l'Image de l'Inf. et de la Teledetection, Strasbourge, France ; F. Heitz ; J. P. Armspach

In this paper, we address the issue of topology preservation in deformable image matching. A novel constrained hierarchical parametric approach is presented, that ensures that the mapping is globally one-to one and thus preserves topology in the deformed image. The transformation between the source and target images is parameterized at different scales, using a decomposition of the deformation vector field over a sequence of nested (multiresolution) subspaces. The Jacobian of the mapping is controlled over the continuous domain of the transformation, ensuring actual topology preservation on the whole image support. The resulting fast nonlinear constrained optimization algorithm enables to track large nonlinear deformations while preserving the topology. Experimental results are presented both on simulated data and on real medical images

Published in:

IEEE Transactions on Image Processing  (Volume:10 ,  Issue: 7 )