By Topic

Segmentation of bright targets using wavelets and adaptive thresholding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiao-Ping Zhang ; Dept. of Electr. Eng. & Comput. Eng., Ryerson Polytech. Inst., Toronto, Ont., Canada ; Desai, M.D.

A general systematic method for the detection and segmentation of bright targets is developed. We use the term “bright target” to mean a connected, cohesive object which has an average intensity distribution above that of the rest of the image. We develop an analytic model for the segmentation of targets, which uses a novel multiresolution analysis in concert with a Bayes classifier to identify the possible target areas. A method is developed which adaptively chooses thresholds to segment targets from background, by using a multiscale analysis of the image probability density function (PDF). A performance analysis based on a Gaussian distribution model is used to show that the obtained adaptive threshold is often close to the Bayes threshold. The method has proven robust even when the image distribution is unknown. Examples are presented to demonstrate the efficiency of the technique on a variety of targets

Published in:

Image Processing, IEEE Transactions on  (Volume:10 ,  Issue: 7 )