Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Reduction of power consumption in scan-based circuits during test application by an input control technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsung-Chu Huang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Kuen-Jong Lee

This paper proposes a novel technique to minimize the switching activity of full-scan circuits during test application time. The basic idea is to identify an input control pattern (CP) for a full-scan circuit such that by applying the pattern to the primary inputs of the circuit during the scan operation, the switching activity in the combinational part can be reduced or even eliminated. A D-algorithm-like CP generator is developed to generate the CP. This input control technique can be utilized together with the existing vector ordering or latch ordering techniques. Experimental results show that the vector ordering and the latch ordering techniques can achieve 22.37% of average improvement by redoing the experiments in previous work using our test sets, while 34.23% average improvement can be achieved if the input control technique is employed after the latch ordering and vector ordering techniques

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:20 ,  Issue: 7 )