By Topic

Full-wave PEEC time-domain method for the modeling of on-chip interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Restle, P.J. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Ruehli, A.E. ; Walker, S.G. ; Papadopoulos, G.

With the advances in the speed of high-performance chips, inductance effects in some on-chip interconnects have become significant. Specific networks such as clock distributions and other highly optimized circuits are especially impacted by inductance. Several difficult aspects have to be overcome to obtain valid waveforms for problems where inductances contribute significantly. Mainly, the geometries are very complex and the interactions between the capacitive and inductive currents have to be taken into account simultaneously. In this paper, we show that a full-wave partial element equivalent circuit method, which includes the delays among the partial elements, leads to an efficient solver enabling the analysis of large meaningful problems. Applying this method to several examples leads to helpful insights for realistic very large scale integration wiring problems. It is shown in this paper that the impact overshoot, reflections, and inductive coupling are critical for the design of critical on-chip interconnects

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:20 ,  Issue: 7 )