By Topic

Iterative construction of optimum signature sequence sets in synchronous CDMA systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ulukus, Sennur ; WINLAB, Rutgers-State Univ. of New Jersey, Piscataway, NJ, USA ; Yates, R.D.

Optimum signature sequence sets that maximize the capacity of single-cell synchronous code division multiple access (CDMA) systems have been identified. Optimum signature sequences minimize the total squared correlation (TSC); they form a set of orthogonal sequences, if the number of users is less than or equal to the processing gain, and a set of Welch (1994) bound equality (WBE) sequences, otherwise. We present an algorithm where users update their transmitter signature sequences sequentially, in a distributed fashion, by using available receiver measurements. We show that each update decreases the TSC of the set, and produces better signature sequence sets progressively. We prove that the algorithm converges to a set of orthogonal signature sequences when the number of users is less than or equal to the processing gain. We observe and conjecture that the algorithm converges to a WBE set when the number of users is greater than the processing gain. At each step, the algorithm replaces one signature sequence from the set with the normalized minimum mean squared error (MMSE) receiver corresponding to that signature sequence. Since the MMSE filter can be obtained by a distributed algorithm for each user, the proposed algorithm is amenable to distributed implementation

Published in:

Information Theory, IEEE Transactions on  (Volume:47 ,  Issue: 5 )