By Topic

The effects of fluorine on parametrics and reliability in a 0.18-μm 3.5/6.8 nm dual gate oxide CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hook, T.B. ; IBM Microelectron., Essex Junction, VT, USA ; Adler, E. ; Guarin, F. ; Lukaitis, J.
more authors

Fluorine was introduced into the gate oxide by implantation at various doses into the gate polysilicon. After complete processing, the fluorine remaining in the system was characterized by secondary ion mass spectroscopy (SIMS) and then correlated to a number of important technological device parameters. The threshold voltages of thin (3.5 nm) and thick (6.8 nm) field-effect transistors (FETs) were measured, and an increase in interface trap density with increasing fluorine content was identified. An increase in oxide thickness and improvement in hot-carrier immunity were observed. Little change to oxide dielectric integrity was noted, but the negative bias threshold instability (NBTI) shift was improved with the introduction of fluorine. These data indicate that benefits may be obtained by introducing fluorine into the p-type FET (PFET), but that the increase in interface traps makes fluorine in the n-type FET (NFET) less attractive from a technological perspective. These data are in agreement with a previously proposed mechanism whereby fluorine removes hydrogen-related sites from the oxide

Published in:

Electron Devices, IEEE Transactions on  (Volume:48 ,  Issue: 7 )