By Topic

Blind adaptive multiuser detection for DS/SSMA communications with generalized random spreading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Joon Ho Cho ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Lehnert, J.S.

A new spreading scheme and an accompanying blind adaptive receiver structure are proposed for direct-sequence spread-spectrum multiple-access communications in a slowly-varying, frequency-selective fading channel. Each user's spreading sequence is given by the Kronecker product of a long-period pseudonoise (PN) sequence, which is accurately modeled by a random sequence, and a short-length deterministic signature code. This spreading scheme bridges the gap between pure PN spreading and pure short-code spreading schemes. It is shown that with this spreading scheme, the channel response to the desired signal component is easily estimated without relying on the spectral decomposition of the signal correlation matrix. With the estimate of the channel response, the receiver suppresses interference based on the maximum signal-to-interference ratio criterion. The blind adaptive receiver requires only coarse timing information and a priori knowledge of the desired user's PN sequence for adaptation. Numerical results show that the adaptive receiver significantly suppresses interference by successfully estimating the channel response and the interference statistics with a low computational complexity. An extension to spatio-temporal processing using an array antenna is also discussed

Published in:

Communications, IEEE Transactions on  (Volume:49 ,  Issue: 6 )