By Topic

Real-time control of robot manipulators in the presence of obstacles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kheradpir, S. ; GTE Lab. Inc., Waltham, MA, USA ; Thorp, J.S.

A novel approach is suggested to the problem of obstacle avoidance for a point robot moving among circular or elliptical/spherical or ellipsoid obstacles. The obstacle avoidance strategy (OAS) translates each state constraint (obstacle) into a state-dependent control constraint (SDCC). Each SDCC defines a hyperplane in the control space u. The intersection of the SDCC sets with the hard control bounds forms a polygon in u. The optimal decision strategy (ODS) control algorithm is then used to find the control which lies in this polygon-assuring obstacle avoidance-and minimizes the deviation between the acceleration vector of the point robot and a desired acceleration field. Simulation results display the effectiveness of the algorithm for a workspace hosting multiple obstacles. The OAS algorithm has been implemented successfully on a small Cartesian-coordinate robot

Published in:

Robotics and Automation, IEEE Journal of  (Volume:4 ,  Issue: 6 )