We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Redundancy detection in semistructured case bases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Racine, K. ; IBM Canada Ltd., Toronto, Ont., Canada ; Qiang Yang

With the dramatic proliferation of case-based reasoning systems in commercial applications, many case bases are now becoming legacy systems. They represent a significant portion of an organization's assets, but they are large and difficult to maintain. One of the contributing factors is that these case bases are often large and yet unstructured or semistructured; they are represented in natural language text. Adding to the complexity is the fact that the case bases are often authored and updated by different people from a variety of knowledge sources, making it highly likely for a case base to contain redundant and inconsistent knowledge. We present methods and a system for maintaining large and semistructured case bases. We focus on a difficult problem in case base maintenance: redundancy detection. This problem is particularly pervasive when one deals with a semistructured case base. We discuss an information retrieval-based algorithm and an implemented system for solving this problem. As the ability to contain the knowledge acquisition problem is of paramount importance, our method allows one to express relevant domain expertise for detecting redundancy naturally and effortlessly. Empirical evaluations of the system demonstrate the effectiveness of the methods in several large domains

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:13 ,  Issue: 3 )