By Topic

Staircase-free finite-difference time-domain formulation for general materials in complex geometries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dridi, K.H. ; Opt. & Fluid Dynamics Dept., Riso Nat. Lab., Roskilde, Denmark ; Hesthaven, J.S. ; Ditkowski, Adi

A stable Cartesian grid staircase-free finite-difference time-domain formulation for arbitrary material distributions in general geometries is introduced. It is shown that the method exhibits higher accuracy than the classical Yee (1966) scheme for complex geometries since the computational representation of physical structures is not of a staircased nature. Furthermore, electromagnetic boundary conditions are correctly enforced. The method significantly reduces simulation times as fewer points per wavelength are needed to accurately resolve the wave and the geometry. Both perfect electric conductors and dielectric structures have been investigated. Numerical results are presented and discussed

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:49 ,  Issue: 5 )