By Topic

Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
N. Geng ; Inst. for Microwaves & Electron., Karlsruhe Univ., Germany ; A. Sullivan ; L. Carin

The fast multipole method (FMM) was originally developed for perfect electric conductors (PECs) in free space, through exploitation of the spectral properties of the free-space Green's function. In the work reported here, the FMM is modified, for scattering from an arbitrary three-dimensional (3-D) PEC target above or buried in a lossy half space. The “near” terms in the FMM are handled via the original method-of-moments (MoM) analysis, wherein the half-space Green's function is evaluated efficiently and rigorously through application of the method of complex images. The “far” FMM interactions, which employ a clustering of expansion and testing functions, utilize an approximation to the Green's function dyadic via real image sources and far-field reflection dyadics. The half-space FMM algorithm is validated through comparison with results computed via a rigorous MoM analysis. Further, a detailed comparison is performed on the memory and computational requirements of the MoM and FMM algorithms for a target in the vicinity of a half-space interface

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:49 ,  Issue: 5 )