By Topic

A real-time implementation of a stereophonic acoustic echo canceler

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. Eneroth ; Dept. of Appl. Electron., Lund Univ., Sweden ; S. L. Gay ; T. Gansler ; J. Benesty

Teleconferencing systems employ acoustic echo cancelers to reduce echoes that result from the coupling between loudspeaker and microphone. To enhance the sound realism, two-channel audio is necessary. However, stereophonic acoustic echo cancellation (SAEC) is more difficult to solve because of the necessity to uniquely identify two acoustic paths, which becomes problematic since the two excitation signals are highly correlated. In this paper, a wideband stereophonic acoustic echo canceler is presented. The fundamental difficulty of stereophonic acoustic echo cancellation is described and an echo canceler based on a fast recursive least squares (FRLS) algorithm in a subband structure, with equidistant frequency bands, is proposed. The structure has been used in a real-time implementation, with which experiments have been performed. In this paper, simulation results of this implementation on real life recordings, with 8 kHz bandwidth, are studied. The results clearly verify that the theoretic fundamental problem of SAEC also applies in real-life situations. They also show that more sophisticated adaptive algorithms are needed in the lower frequency regions than in the higher regions

Published in:

IEEE Transactions on Speech and Audio Processing  (Volume:9 ,  Issue: 5 )