Cart (Loading....) | Create Account
Close category search window
 

Noise power spectral density estimation based on optimal smoothing and minimum statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Martin, R. ; Inst. of Commun. Syst. & Data Processing, Aachen Univ. of Technol., Germany

We describe a method to estimate the power spectral density of nonstationary noise when a noisy speech signal is given. The method can be combined with any speech enhancement algorithm which requires a noise power spectral density estimate. In contrast to other methods, our approach does not use a voice activity detector. Instead it tracks spectral minima in each frequency band without any distinction between speech activity and speech pause. By minimizing a conditional mean square estimation error criterion in each time step we derive the optimal smoothing parameter for recursive smoothing of the power spectral density of the noisy speech signal. Based on the optimally smoothed power spectral density estimate and the analysis of the statistics of spectral minima an unbiased noise estimator is developed. The estimator is well suited for real time implementations. Furthermore, to improve the performance in nonstationary noise we introduce a method to speed up the tracking of the spectral minima. Finally, we evaluate the proposed method in the context of speech enhancement and low bit rate speech coding with various noise types

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:9 ,  Issue: 5 )

Date of Publication:

Jul 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.