By Topic

Design for control-a concurrent engineering approach for mechatronic systems design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Q. Li ; Dept. of Mech. Eng., Adelaide Univ., SA, Australia ; W. J. Zhang ; L. Chen

The well-accepted basis for developing a mechatronic system is a synergetic concurrent design process that integrates different engineering disciplines. In this paper, a general model is derived to mathematically describe the concurrent design of a mechatronic system. Based on this model, a concurrent engineering approach, called design for control (DFC), is formally presented for mechatronic systems design. Compared to other mechatronic design methodologies, DFC emphasizes obtaining a simple dynamic model of the mechanical structure by a judicious structure design and a careful selection of mechanical parameters. Once the simple dynamic model is available, in spite of the complexity of the mechanical structure, the controller design can be facilitated and better control performance can be achieved. Four design scenarios in application of DFC are addressed. A case study is implemented to demonstrate the effectiveness of DFC through the design and control of a programmable four-bar linkage

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:6 ,  Issue: 2 )