By Topic

Robust constrained linear receivers for CDMA wireless systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhi Tian ; Dept. of Electr. & Comput. Eng., Michigan Technol. Univ., Houghton, MI, USA ; Bell, K.L. ; Van Trees, H.L.

For code-division multiple access (CDMA) communication systems, many constrained linear receivers have been developed to suppress multiple access interference. The linearly constrained formulations are generally sensitive to multipath fading and other types of signal mismatch. We develop robust linear receivers by exploring appropriate constraints. Multiple linear constraints are exploited to preserve the output energy that is scattered in multipath channels. In addition, a quadratic inequality constraint on the weight vector norm is used to improve robustness with respect to imprecise signal modeling. These constraints can be applied to the minimum output energy (MOE) detector to mitigate the signal mismatch problem and to the decision directed minimum mean square error (MMSE) detector to prevent error propagation and eliminate the need for training sequences at startup. Adaptive implementations for the proposed detectors are presented using recursive least square (RLS) updating in both the direct form and the partitioned linear interface canceller (PLIC) structure. Simulations are performed in a multipath propagation environment to illustrate the performance of the proposed detectors

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 7 )