By Topic

A new approach based on “soft statistics” to the nonlinear blind-deconvolution of unknown data channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Baccarelli, Enzo ; INFO-COM Dept., Rome Univ., Italy ; Galli, S.

In this paper, we present a new nonlinear receiver for the blind deconvolution of intersymbol interference (ISI) impaired data. The proposed receiver achieves fast identification of an unknown transmission channel using only one channel estimator and requiring the computation of only the second-order conditional statistics of the baud-rate sampled received signal and the knowledge of the transmitted constellation. The main novelty of the proposed approach is that the receiver accomplishes fast channel-identification by using soft-statistics. In particular, the receiver consists of a symbol-by-symbol maximum a posteriori (SbS-MAP) detector that feeds a nonlinear Kalman-like channel estimator with the soft statistics constituted by the a posteriori probabilities (APPs) of the state sequence of the ISI channel. Several numerical results confirm that the proposed blind detector achieves the identification of nonminimum phase channels with deep spectral notches within 300 symbols, even at low signal-to-noise ratios (SNRs). Furthermore, an attractive feature of the proposed blind channel estimator is that it directly estimates the discrete-time impulse response of the unknown channel so that, in principle, any equalization technique for known channels may be performed after channel identification has been achieved

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 7 )