By Topic

Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Pesavento ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Ont., Canada ; A. B. Gershman

We consider the problem of estimating directions of arrival (DOAs) of multiple sources observed on the background of nonuniform white noise with an arbitrary diagonal covariance matrix. A new deterministic maximum likelihood (ML) DOA estimator is derived. Its implementation is based on an iterative procedure which includes a stepwise concentration of the log-likelihood (LL) function with respect to the signal and noise nuisance parameters and requires only a few iterations to converge. New closed-form expressions for the deterministic and stochastic direction estimation Cramer-Rao bounds (CRBs) are derived for the considered nonuniform model. Our expressions can be viewed as an extension of the well-known results by Stoica and Nehorai (1989, 1990) and Weiss and Friedlander (1993) to a more general noise model than the commonly used uniform one. In addition, these expressions extend the results obtained by Matveyev et al. (see Circuits, Syst., Signal Process., vol.18, p.479-87, 1999) to the multiple source case. Comparisons with the above-mentioned earlier results help to discover several interesting properties of DOA estimation in the nonuniform noise case. To compare the estimation performance of the proposed ML technique with the results of our CRB analysis and with the performance of conventional “uniform” ML, simulation results are presented. Additionally, we test our technique using experimental seismic array data. Our simulations and experimental results both validate essential performance improvements achieved by means of the approach proposed

Published in:

IEEE Transactions on Signal Processing  (Volume:49 ,  Issue: 7 )