By Topic

A level-set approach for the metamorphosis of solid models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Breen, D.E. ; Comput. Graphics Lab., California Inst. of Technol., Pasadena, CA, USA ; Whitaker, R.T.

We present a new approach to 3D shape metamorphosis. We express the interpolation of two shapes as a process where one shape deforms to maximize its similarity with another shape. The process incrementally optimizes an objective function while deforming an implicit surface model. We represent the deformable surface as a level set (iso-surface) of a densely sampled scalar function of three dimensions. Such level-set models have been shown to mimic conventional parametric deformable surface models by encoding surface movements as changes in the grayscale values of a volume data set. Thus, a well-founded mathematical structure leads to a set of procedures that describes how voxel values can be manipulated to create deformations that are represented as a sequence of volumes. The result is a 3D morphing method that offers several advantages over previous methods, including minimal need for user input, no model parameterization, flexible topology, and subvoxel accuracy

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:7 ,  Issue: 2 )