Cart (Loading....) | Create Account
Close category search window

The effect of variations in nickel/gold surface finish on the assembly quality and attachment reliability of a plastic ball grid array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Coyle, R.J. ; Lucent Technol. Bell Labs., Princeton, NJ, USA ; Wenger, G.M. ; Hodges, D.E. ; Mawer, A.
more authors

Electrolytic and electroless Ni/Au are common pad surface finishes on area array (BGA or CSP) packages and printed wiring boards (PWB). The electroless nickel/immersion gold (ENIG) process often is implemented when there is insufficient space to allow bussing for the more common electrolytic Ni/Au plating. The ENIG process continues to be used despite evidence that it may cause or contribute to catastrophic, brittle, interfacial solder joint fractures. In this investigation a plastic ball grid array (PBGA) test vehicle is used to compare quality and reliability of four variations of the ENIG surface finish. The standard electrolytic Ni/Au surface finish is used as the control cell for the experiment. Ball shear tests and optical and scanning electron microscopy are performed on as-received and thermally preconditioned packages to evaluate package quality prior to assembly. Accelerated temperature cycling (0/+100°C and -40/+125°C) is used to evaluate solder joint attachment reliability. Detailed failure mode analysis is used to compare the fracture modes in the ball shear and thermal cycled samples in the electroless and electrolytic packages. The results are discussed in terms of the failure modes and the characteristics of the different Ni/Au surface finishes

Published in:

Electronic Components and Technology Conference, 2001. Proceedings., 51st

Date of Conference:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.