By Topic

Erbium-doped fiber laser tuning using two cascaded unbalanced Mach-Zehnder interferometers as intracavity filter: numerical analysis and experimental confirmation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

We propose a new method for tuning an Er3+-doped continuous-wave fiber-ring laser. We present a novel numerical model and confirm the model with experimental results. The numerical model relies on the implementation of the analytical solution of signal propagation over small (elemental) segments of amplifier fiber rather than using the usual Runge-Kutta algorithm. The validity of the model is verified by the good agreement between computer results and experimental data. Experiments demonstrating a 11.2-nm wavelength tuning range have been conducted using an electrooptic intracavity filter composed of two cascaded unbalanced Mach-Zehnder interferometers (MZIs) integrated in lithium niobate. The numerical analysis shows that the tuning range obtained is limited by the combination of gain shape and filter characteristics. Increased tuning range can be obtained by decreasing losses or by using a more selective filter

Published in:

Lightwave Technology, Journal of  (Volume:19 ,  Issue: 6 )