By Topic

Probabilistic data association methods for tracking complex visual objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. Rasmussen ; Nat. Inst. of Stand. & Technol., Gaithersburg, MD, USA ; G. D. Hager

We describe a framework that explicitly reasons about data association to improve tracking performance in many difficult visual environments. A hierarchy of tracking strategies results from ascribing ambiguous or missing data to: 1) noise-like visual occurrences, 2) persistent, known scene elements (i.e., other tracked objects), or 3) persistent, unknown scene elements. First, we introduce a randomized tracking algorithm adapted from an existing probabilistic data association filter (PDAF) that is resistant to clutter and follows agile motion. The algorithm is applied to three different tracking modalities-homogeneous regions, textured regions, and snakes-and extensibly defined for straightforward inclusion of other methods. Second, we add the capacity to track multiple objects by adapting to vision a joint PDAF which oversees correspondence choices between same-modality trackers and image features. We then derive a related technique that allows mixed tracker modalities and handles object overlaps robustly. Finally, we represent complex objects as conjunctions of cues that are diverse both geometrically (e.g., parts) and qualitatively (e.g., attributes). Rigid and hinge constraints between part trackers and multiple descriptive attributes for individual parts render the whole object more distinctive, reducing susceptibility to mistracking. Results are given for diverse objects such as people, microscopic cells, and chess pieces

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:23 ,  Issue: 6 )