By Topic

Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Cumming, C.J. ; Nomadics Inc., Stillwater, OK, USA ; Aker, C. ; Fisher, M. ; Fok, M.
more authors

Chemical vapors originating from the explosive charge within landmines and unexploded ordnance (UXO) form a chemical “signature” unique to these devices. The fact that canines can detect this signature was a primary motivation for the Defense Advanced Research Projects Agency's (DARPA) Dog's Nose Program. One goal of this program was to develop electronic chemical sensors that mimic the canine's ability to detect landmines. The sensor described here, developed under this program, utilizes novel fluorescent polymers to detect landmine signature vapors in air at ultratrace concentration levels (parts-per-trillion or less). Thin films of the polymers are highly emissive but undergo a dramatic reduction in emission intensity when molecules of target analytes bind to the polymer. Binding of a single explosive molecule can quench the fluorescence from hundreds of polymer repeat units, resulting in an amplification of the quenching response. The polymer structure contains receptor sites designed to interact specifically with nitroaromatic explosives, enhancing the selectivity of the polymers for target analytes. A man-portable sensor prototype, similar in size and configuration to metal detectors currently used for mine detection, has demonstrated performance comparable to that of canines during field tests monitored by DARPA at Fort Leonard Wood, MO

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:39 ,  Issue: 6 )